Review on Cooling Performance of Transformers


  • Vishwanath Sharma
  • Prof. Shashi Kant Sharma


Transformers, step up, step down, cooling , coolants


A power transformer is connected that converts electricity from one wired circuit to the next until maintaining a steady frequency. A transformer is characterized as static equipment because it does not rotate or transform into something new. This study discusses the concept, classifications, and operating procedures of transformers. The fundamental operation of transformers is seen below.

Author Biographies

Vishwanath Sharma

M.Tech Scholar

Department Of Mechanical Engineering

School of Research and Technology People's University

Bhopal, Madhya Pradesh, India

Prof. Shashi Kant Sharma

Associate Professor

Department Of Mechanical Engineering

School of Research and Technology People's University

Bhopal, M.P, India


Hasan, M. I. (2017). Improving the cooling performance of electrical distribution transformer using transformer oil – Based MEPCM suspension. Engineering Science and Technology, an International Journal, 20(2), 502–510.

Córdoba, P. A., Dari, E., & Silin, N. (2019). A 3D numerical model of an ONAN distribution transformer. Applied Thermal Engineering, 148(July 2018), 897–906.

Rodriguez, G. R., Garelli, L., Storti, M., Granata, D., Amadei, M., & Rossetti, M. (2017). Numerical and experimental thermo-fluid dynamic analysis of a power transformer working in ONAN mode. Applied Thermal Engineering, 112, 1271–1280.

Meyer, O. H. H., Lervåg, K. Y., & Ervik, Å. (2021). A multiscale porous–resolved methodology for efficient simulation of heat and fluid transport in complex geometries, with application to electric power transformers. Applied Thermal Engineering, 183(September 2020).

Garelli, L., Ríos Rodriguez, G. A., Kubiczek, K., Lasek, P., Stepien, M., Smolka, J., Storti, M., Pessolani, F., & Amadei, M. (2021). Thermo-magnetic-fluid dynamics analysis of an ONAN distribution transformer cooled with mineral oil and biodegradable esters. Thermal Science and Engineering Progress, 23, 100861.

Paramane, S. B., Van Der Veken, W., & Sharma, A. (2016). A coupled internal-external flow and conjugate heat transfer simulations and experiments on radiators of a transformer. Applied Thermal Engineering, 103, 961–970.

Raeisian, L., Niazmand, H., Ebrahimnia-Bajestan, E., & Werle, P. (2019). Feasibility study of waste vegetable oil as an alternative cooling medium in transformers. Applied Thermal Engineering, 151(September 2018), 308–317.

Pendyala, R., Ilyas, S. U., Lim, L. R., & Marneni, N. (2016). CFD Analysis of Heat Transfer Performance of Nanofluids in Distributor Transformer. Procedia Engineering, 148, 1162–1169.

Radakovic, Z., Jevtic, M., & Das, B. (2017). Dynamic thermal model of kiosk oil immersed transformers based on the thermal buoyancy driven air flow. International Journal of Electrical Power and Energy Systems, 92, 14–24.

Taheri, A. A., Abdali, A., & Rabiee, A. (2019). A Novel Model for Thermal Behavior Prediction of Oil-Immersed Distribution Transformers with Consideration of Solar Radiation. IEEE Transactions on Power Delivery, 34(4), 1634–1646.




How to Cite

Sharma, V. ., & Sharma, P. S. K. . (2022). Review on Cooling Performance of Transformers. SMART MOVES JOURNAL IJOSTHE, 9(1), 1–5. Retrieved from