Comparison of Warming efficiency of Greenhouse Solar Dryer with Four Distinct Design Implementations

Authors

  • Mrigank Bhushan
  • Prof. Ashish Murchikar

Keywords:

Solar dryer, Greenhouse solar dryer, Solar Energy, Direct Solar Dryer, Indirect Solar Dryer.

Abstract

Drying is a technique for transferring warmth from a source to a product while also removing moisture from the product in a limited space. When using sun drying, the heat required for drying is primarily provided by solar energy. In this paper we have discussed about the fundamentals of different types of green house solar dryer, and to develop new design of solar dryer that would maximize warming efficiency. The main goal of this research is to run a computational fluid dynamics analysis on a previous model to analyze the influence of the highest warming within the greenhouse solar dryer

Metrics

Metrics Loading ...

Author Biographies

Mrigank Bhushan

M. Tech. Scholar

Department of Mechanical Engineering

Corporate Institute of Science and Technology

Bhopal, Madhya Pradesh, India

Prof. Ashish Murchikar

Head of Department

Department of Mechanical Engineering

Corporate Institute of Science and Technology
Bhopal, Madhya Pradesh, India

References

D. Jagadeesh, M. Vivekanandan, A. Natarajan, S. Chandrasekar “Experimental conditions to identify the ideal shape of dryer investigation of six shapes of solar greenhouse dryer in no load” Materials Today: Proceedings, Accepted 13 May 2020. https://doi.org/10.1016/j.matpr.2020.05.386.

Masnaji R. Nukulwar&Vinod B. Tungikar “A review on performance evaluation of solar dryer and its material for drying agricultural products” Materials Today: Proceedings, Accepted 12 August 2020. https://doi.org/10.1016/j.matpr.2020.08.354.

Lakshmi DVN, Muthukumar P, Nayak PK, Experimental Investigations on Active Solar Dryers Integrated with Thermal Storage for Drying of Black Pepper, Renewable Energy. https://doi.org/10.1016/j.renene.2020.11.144.

V.P. Sethi&MankaranDhiman “Design, space optimization and modelling of solar-cum-biomass hybrid greenhouse crop dryer using flue gas heat transfer pipe network” Solar Energy 206 (2020) 120–135. https://doi.org/10.1016/j.solener.2020.06.006.

Akhilesh Singh, Jahar Sarkar &RashmiRekhaSahoo “Experimental performance analysis of novel indirect-expansion solarinfrared assisted heat pump dryer for agricultural products” Solar Energy 206 (2020) 907–917. https://doi.org/10.1016/j.solener.2020.06.065.

ZakariaAlimohammadi, HadiSamimiAkhijahani&Payman Salami “Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods” Solar Energy 201 (2020) 157–177. https://doi.org/10.1016/j.solener.2020.02.079.

Adnan Sozen at el. “ Thermal performance enhancement of tube-type alternative indirect solar dryer with iron mesh modification” Solar Energy 207 (2020) 1269–1281. https://doi.org/10.1016/j.solener.2020.07.072.

Saloni Spall &V.P. Sethi “Design, modeling and analysis of efficient multi-rack tray solar cabinet dryer coupled with north wall re?ector” Solar Energy 211 (2020) 908–919. https://doi.org/10.1016/j.solener.2020.10.012.

Y. Mohana at el. “Solar dryers for food applications: Concepts, designs, and recent advances” Solar Energy 208 (2020) 321–344. https://doi.org/10.1016/j.solener.2020.07.098.

Bilal Lamrani&AbdeslamDraoui “Modelling and simulation of a hybrid solar-electrical dryer of wood integrated with latent heat thermal energy storage system” Thermal Science and Engineering Progress 18 (2020) 100545. https://doi.org/10.1016/j.tsep.2020.100545.

Downloads

Published

2021-12-28

How to Cite

Bhushan, M. ., & Murchikar, P. A. . (2021). Comparison of Warming efficiency of Greenhouse Solar Dryer with Four Distinct Design Implementations. SMART MOVES JOURNAL IJOSTHE, 8(6), 1–8. Retrieved from https://ijosthe.com/index.php/ojssports/article/view/163

Issue

Section

Articles