Deep Learning Based Channel Estimation in Data Driven MIMO Receiver


  • Vimlesh Gour
  • Mr. Kamal Niwaria
  • Dr. Bharti Chourasia


OFDM, MIMO, Space Time Trellis Code, Frequency Index Modulation, Compressed Sensing (CS), Channel Estimation


OFDM (orthogonal frequency division multiplexing) is a wireless network methodology that sends multiple data streams across a particular channel while effectiently handling inter-symbol interference and enhancing frequency band available. And since the antenna is sending signals, evaluating the noise in a noisy channel is essential. This research aims into compressed sensing (CS) as a way to improve throughput and BER performance by transmitting additional data bits within every subcarrier frame whilst still limiting detector unpredictability. The Neuro-LS methodology is used in this study to generate a soft trellis decoding algorithm through channel estimation. Trellis decoding performs better BER, and DNN relying channel estimation outperforms BER, according to the findings.

Author Biographies

Vimlesh Gour

Research Scholar

Sarvepalli Radhakrishnan University 
Bhopal, M.P. India

Mr. Kamal Niwaria

Assistant Professor

Sarvepalli Radhakrishnan University

Bhopal, M.P, India

Dr. Bharti Chourasia

Associate Professor

Sarvepalli Radhakrishnan University

Bhopal, M.P, India


Le, Ha An et al. “Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems.” Sensors (Basel, Switzerland) vol. 21,14 4861. 16 Jul. 2021, doi:10.3390/s21144861

Raviteja, P., Phan, K. T., Hong, Y., & Viterbo, E. (2018). Interference cancellation and iterative detection for orthogonal time frequency space modulation. IEEE Transactions on Wireless Communications, 17(10), 6501–6515.

Basar, E., Wen, M., Mesleh, R., Di Renzo, M., Xiao, Y., & Haas, H. (2017). Index Modulation Techniques for Next-Generation Wireless Networks. IEEE Access, 5, 16693–16746.

Mao, T., Wang, Q., Wang, Z., & Chen, S. (2019). Novel index modulation techniques: A survey. In IEEE Communications Surveys and Tutorials (Vol. 21, Issue 1). IEEE.

Cheng, X., Zhang, M., Wen, M., & Yang, L. (2018). Index modulation for 5G: Striving to do more with less. IEEE Wireless Communications, 25(2), 126–132.

Prabaharan, N., & Palanisamy, K. (2017). A comprehensive review on reduced switch multilevel inverter topologies, modulation techniques and applications. Renewable and Sustainable Energy Reviews, 76(January 2016), 1248–1282.

Universitatea Tehnica? “Gh. Asachi” Ias?i. Faculty of Electronics, T. and I. T., IEEE Romania Section. CAS Chapter, IEEE Circuits and Systems Society, & Institute of Electrical and Electronics Engineers. (2017). ISSCS 2017 : International Symposium on Signals, Circuits and Systems : 13 - 14 July, 2017, lasi, Romania.

Wen, M., Zheng, B., Kim, K. J., Di Renzo, M., Tsiftsis, T. A., Chen, K. C., & Al-Dhahir, N. (2019). A Survey on Spatial Modulation in Emerging Wireless Systems: Research Progresses and Applications. IEEE Journal on Selected Areas in Communications, 37(9), 1949–1972.

Cai, Y., Qin, Z., Cui, F., Li, G. Y., & McCann, J. A. (2018). Modulation and Multiple Access for 5G Networks. IEEE Communications Surveys and Tutorials, 20(1), 629–646.

Siwakoti, Y. P., & Blaabjerg, F. (2018). Common-ground-type transformerless inverters for single-phase solar photovoltaic systems. IEEE Transactions on Industrial Electronics, 65(3), 2100–2111.

Ye, H., Li, G. Y., & Juang, B. H. (2018). Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wireless Communications Letters, 7(1), 114–117.

Zheng, B., & Zhang, R. (2020). Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization. IEEE Wireless Communications Letters, 9(4), 518–522.

Jaradat, A. M., Hamamreh, J. M., & Arslan, H. (2020). OFDM with hybrid number and index modulation. IEEE Access, 8, 55042–55053.

Yang, Z., Wu, B., Zheng, K., Wang, X., & Lei, L. (2016). A survey of collaborative filtering-based recommender systems for mobile internet applications. IEEE Access, 4, 3273–3287.

Jaradat, A. M., Hamamreh, J. M., & Arslan, H. (2019). Modulation Options for OFDM-Based Waveforms: Classification, Comparison, and Future Directions. IEEE Access, 7(1), 17263–17278.

Felix, A., Cammerer, S., Dorner, S., Hoydis, J., & Ten Brink, S. (2018). OFDM-Autoencoder for End-to-End Learning of Communications Systems. IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2018-June.

Wen, M., Li, Q., Basar, E., & Zhang, W. (2018). Generalized multiple-mode OFDM with index modulation. IEEE Transactions on Wireless Communications, 17(10), 6531–6543.

Jawhar, Y. A., Audah, L., Taher, M. A., Ramli, K. N., Shah, N. S. M., Musa, M., & Ahmed, M. S. (2019). A Review of Partial Transmit Sequence for PAPR Reduction in the OFDM Systems. IEEE Access, 7(1), 18021–18041.

Baquero Barneto, C., Riihonen, T., Turunen, M., Anttila, L., Fleischer, M., Stadius, K., Ryynänen, J., & Valkama, M. (2019). Full-Duplex OFDM Radar with LTE and 5G NR Waveforms: Challenges, Solutions, and Measurements. IEEE Transactions on Microwave Theory and Techniques, 67(10), 4042–4054.




How to Cite

Gour, V. ., Niwaria, M. K. ., & Chourasia, D. B. . (2022). Deep Learning Based Channel Estimation in Data Driven MIMO Receiver. SMART MOVES JOURNAL IJOSTHE, 8(6), 25–29. Retrieved from




Most read articles by the same author(s)